Titen HD® Threaded Rod Hanger

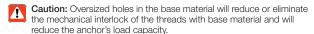
The Titen HD threaded rod hanger is a high-strength screw anchor designed to suspend threaded rod from concrete slabs, beams or concrete over steel in order to hang pipes, cable trays and other HVAC equipment. The anchor offers low installation torque with no secondary setting, and has been tested to offer industry-leading performance in cracked and uncracked concrete — even in seismic loading conditions.

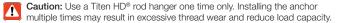
Features

- Thread design undercuts to efficiently transfer the load to the base material
- Serrated cutting teeth and patented thread design enable quick and easy installation
- Specialized heat-treating process creates tip hardness to facilitate cutting while the anchor body remains ductile
- Designed to install using a rotary hammer or hammer drill with standard ANSI drill bits — no special tools required
- Installs with standard-sized sockets
- Code listed for cracked and uncracked concrete applications under the 2015, 2012 and 2009 IBC/IRC, per ICC-ES ESR-2713
- FM listed

Codes: ICC-ES ESR-2713;

City of LA Supplement within ESR-2713;


FL15730;


Factory Mutual 3031136 (THD50234RH) and 3061897 (THDB37158RH)

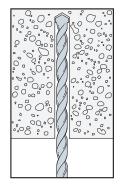
Material: Carbon steel

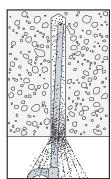
Coating: Zinc plated

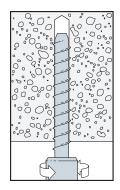
Installation

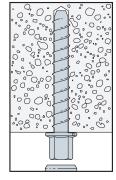
- Drill a hole using the specified diameter carbide bit into the base material to the specified embedment depth plus minimum hole depth overdrill (see the product data table on the next page).
- 2. Blow the hole clean of dust and debris using compressed air.
- Install with a torque wrench, driver drill, hammer drill or cordless impact wrench.
- 4. Fully insert threaded rod.

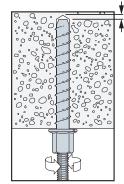
Cracked Concrete CODELISTED




THD50234RH (%"-dia. shank) **THDB37158RH** (¼"-dia. shank)


H THDB25158RH (1/4"-dia. shank)


U.S. Patent 6,623,228


Installation Sequence

Overdrill depth (see product data table on the next page)

Titen HD® Rod Hanger Design Information — Concrete

Titen HD Threaded Rod Hanger Product Data

	Size Model	Accepts Rod Dia.	Drill Bit Dia.	Wrench Size	Min. Embed.	Hole Depth Overdrill	Quantity		
	(in.)	No.	(in.)	(in.)	(in.)	(in.)	(in.)	Вох	Carton
Cracked Concrete	½ x 1%	THDB25158RH	1/4	1/4	3/8	1%	1/8	100	500
FM Cracked Concrete	% x 1%	THDB37158RH	3/8	1/4	1/2	1%	1/8	50	200
FM Cracked Concrete	½ x 2¾	THD50234RH	1/2	3/8	11/16	2½	1/4	50	100

Titen HD Threaded Rod Hanger Installation Information and Additional Data¹

			Model No.				
Characteristic	Symbol	Units	THDB25158RH THDB37158RH	THD50234RH			
Installation Information							
Rod Hanger Diameter	d _o	in.	½ or 3⁄8	1/2			
Drill Bit Diameter	d _{bit}	in.	1/4	3/8			
Maximum Installation Torque ²	T _{inst,max}	ftlb.	24	50			
Maximum Impact Wrench Torque Rating ³	T _{impact,max}	ftlb.	125	150			
Minimum Hole Depth	h _{hole}	in.	13/4	3			
Embedment Depth	h _{nom}	in.	15/8	23/4			
Effective Embedment Depth	h _{ef}	in.	1.19	1.77			
Critical Edge Distance	C _{ac}	in.	3	211/16			
Minimum Edge Distance	C _{min}	in.	1½	13/4			
Minimum Spacing	S _{min}	in.	1½	3			
Minimum Concrete Thickness	h _{min}	in.	31/4	41/4			
	Anch	or Data					
Yield Strength	f _{ya}	psi	100,000	97,000			
Tensile Strength	f _{uta}	psi	125,000	110,000			
Minimum Tensile and Shear Stress Area	A _{se}	in.²	0.042	0.099			
Axial Stiffness in Service Load Range — Uncracked Concrete	eta_{uncr}	lb./in.	202,000	672,000			
Axial Stiffness in Service Load Range — Cracked Concrete	eta_{cr}	lb./in.	173,000	345,000			

The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

^{2.} *T_{inst,max}* is the maximum permitted installation torque for installations using a torque wrench.

 $^{3.}T_{impact,max}$ is the maximum permitted torque rating for impact wrenches.

Titen HD® Rod Hanger Design Information — Concrete

Titen HD Threaded Rod Hanger Tension Strength Design Data for Installations in Concrete¹

			Model No.				
Characteristic	Symbol	Units	THDB25158RH THDB37158RH	THD50234RH			
Anchor Category	1, 2 or 3	_	1				
Embedment Depth	h _{nom}	in.	15/8	2½			
Steel Strength in Tension (ACI 318-14 Section 17.4.1 or ACI 318-11 Section D.5.1)							
Tension Resistance of Steel	N _{sa}	lb.	5,195	10,890			
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	_	0.65				
Concrete Breakout Strength in Tension (ACI 318-14 Section 17.4.2 or ACI 318-11 Section D.5.2)							
Effective Embedment Depth	h _{ef}	in.	1.19	1.77			
Critical Edge Distance	Cac	in.	3	211/16			
Effectiveness Factor — Uncracked Concrete	k _{uncr}	—	30	24			
Effectiveness Factor — Cracked Concrete	K _{cr}	J –	17				
Modification Factor $\Psi_{c,N}$ — 1.0							
Strength Reduction Factor — Concrete Breakout Failure ³	ϕ_{cb}	_	0.65				
Pullout Strength in Tension	on (ACI 318-14 Section 1	7.4.3 or ACI 318-11 Sec	tion D.5.3)				
Pullout Resistance — Uncracked Concrete (f' _c = 2,500 psi)	N _{p,uncr}	lb.	N/A ⁴	2,0255			
Pullout Resistance — Cracked Concrete (f' _c = 2,500 psi)	N _{p,cr}	lb.	N/A ⁴	1,2355			
Strength Reduction Factor — Pullout Failure ⁶	ϕ_p	_	0.65				
Tension Strength for Seismic Applications (ACI 318-14 Section 17.2.3.3 or ACI 318-11 Section D.3.3.3)							
Nominal Pullout Strength for Seismic Loads (f' $_{c}$ = 2,500 psi)	$N_{p,eq}$	lb.	N/A ⁴	1,235 ⁵			
Strength Reduction Factor — Pullout Failure ⁶	ϕ_{eq}	_	0.6	 65			

- The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.
- 2. The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4(b), as applicable.
- 3. The tabulated values of ϕ_{cb} applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided in concrete. For installations were complying reinforcement can be verified, the ϕ_{cb} factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, may be used for Condition A. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4(c) for Condition B.
- 4. As described in this report, N/A denotes that pullout resistance does not govern and does not need to be considered.
- 5. The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by (f'_c/2,500)^{0.5}.
- 6. The tabulated values of ϕ_p or ϕ_{eq} applies when both the load combinations of ACI 318-14 Section 5.3 or ACI 318-11 Section 9w.2, as applicable, are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided in concrete. For installations were complying reinforcement can be verified, the ϕ_p or ϕ_{eq} factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, may be used for Condition A. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4(c) for Condition B.

Mechanical Anchors

^{*} See p. 12 for an explanation of the load table icons.

Titen HD® Rod Hanger Design Information — Concrete

Titen HD Threaded Rod Hanger Tension Strength Design Data for Installations in the Lower and Upper Flute of Normal-Weight or Sand-Lightweight Concrete Through Steel Deck^{1,2,5,6}

		_
BC		(

		Units	Model No.				
			Lowe	Upper Flute			
Characteristic	Symbol		Figure 2	Figure 1	Figure 2		
			THDB25158RH THDB37158RH	THD50234RH	THDB25158RH THDB37158RH		
Minimum Hole Depth	h _{hole}	in.	13⁄4	3	13/4		
Embedment Depth	h _{nom}	in.	1%	21/2	1%		
Effective Embedment Depth	h _{ef}	in.	1.19	1.77	1.19		
Pullout Resistance – Cracked Concrete ^{2,3,4}	N _{p,deck,cr}	lbf.	420	870	655		
Pullout Resistance – Uncracked Concrete ^{2,3,4}	N _{p,deck,uncr}	lbf.	995	1,430	1,555		

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.
- Concrete compressive strength shall be 3,000 psi minimum. The characteristic pullout resistance for greater compressive strengths shall be increased by multiplying the tabular value by (f'_{c:specified}/3,000 psi)^{0.5}.
- 3. For anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies, as shown in Figure 1 or Figure 2, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight-concrete-over-steel-deck floor and roof assemblies N_{P,deck,cr} shall be substituted for N_{P,cr}. Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete N_{P,deck,uncr} shall be substituted for N_{P,uncr}.
- 5. Minimum distance to edge of panel is 2hef-

C-A-2021 @2021 SIMPSON STRONG-TIE COMPANY INC.

6. The minimum anchor spacing along the flute must be the greater of $3h_{\it ef}$ or 1.5 times the flute width.

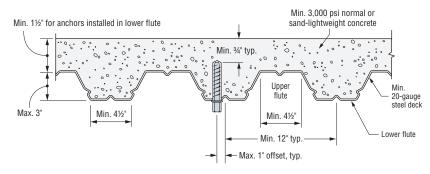


Figure 1. THD50234RH Installation in Concrete over Steel Deck

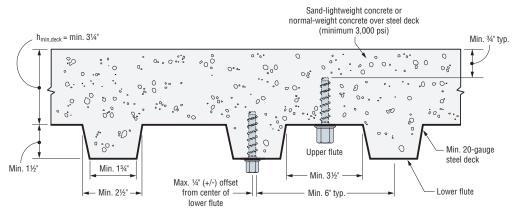


Figure 2. THDB25158RH and THDB37158RH Installation in Concrete over Steel Deck